Many recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms by encouraging iterative refinements toward a stable flow estimation. However, these RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation. They can converge poorly and thereby suffer from performance degradation. To combat these drawbacks, we propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer (using any black-box solver), and differentiates through this fixed point analytically (thus requiring $O(1)$ training memory). This implicit-depth approach is not predicated on any specific model, and thus can be applied to a wide range of SOTA flow estimation model designs. The use of these DEQ flow estimators allows us to compute the flow faster using, e.g., fixed-point reuse and inexact gradients, consumes $4\sim6\times$ times less training memory than the recurrent counterpart, and achieves better results with the same computation budget. In addition, we propose a novel, sparse fixed-point correction scheme to stabilize our DEQ flow estimators, which addresses a longstanding challenge for DEQ models in general. We test our approach in various realistic settings and show that it improves SOTA methods on Sintel and KITTI datasets with substantially better computational and memory efficiency.
翻译:近期许多最先进的光学流模型(SOTA)使用固定的定点(使用任何黑盒求解器)来进行有限的经常更新操作,以效仿传统算法,鼓励迭代完善稳定流量估算。然而,这些RNNS采用大量的计算和记忆管理,没有直接训练来模拟这种稳定的估算。它们会聚集得不好,因此会受到性能退化的影响。为了消除这些缺陷,我们提议了深度平衡(DEQ)流估计器,这种方法直接解决流动,作为隐含层的无限水平固定点(使用任何黑盒求解器),并且通过这一固定点进行分析加以区分(因此需要花费1美元的培训记忆记忆)。这种隐含深度方法不以任何具体模型为基础,因此可以适用于广泛的SOTA流量估算模型设计。 使用这些“DEQ”流估计器可以让我们更快地使用固定点再利用和不精确梯度的方法来计算流动量,其直接消耗了4\sim6\时间比经常对等的培训记忆要少一倍,并且用更精确的计算结果,并且用一个更精确的计算方法来改进了我们固定的计算方法。 我们提议了一个固定的SOTA值的模型,用来来显示我们总的模型。