Recent statistical methods fitted on large-scale GPS data {can provide accurate estimations of the expected travel time between two points.} {However, little is known about the distribution of travel time, which} is key to decision-making {across a number of logistic problems}. { With sufficient data, single road-segment travel time can be well approximated}. The challenge lies in understanding how to aggregate such information over a route to arrive at the route-distribution of travel time. We develop a novel statistical approach to this problem. We show that, under general conditions, without assuming a distribution of speed, travel time {divided by route distance follows a Gaussian distribution} with route-invariant population mean and variance. We develop efficient inference methods for such parameters and propose asymptotically tight population prediction intervals for travel time. Using road-level information (e.g.~traffic flow), we further develop a trip-specific Gaussian-based predictive distribution, resulting in tight prediction intervals for short and long trips. Our methods, implemented in an R-package, are illustrated in a real-world case study using mobile GPS data, showing that our trip-specific and population intervals both achieve the 95\% theoretical coverage levels. Compared to alternative approaches, our trip-specific predictive distribution achieves (a) the theoretical coverage at every level of significance, (b) tighter prediction intervals, (c) less predictive bias, and (d) more efficient estimation and prediction procedures. This makes our approach promising for low-latency, large-scale transportation applications.
翻译:最近根据大型全球定位系统数据制定的统计方法{能够准确估计两个点之间的预期旅行时间。}{然而,对于旅行时间的分布却鲜为人知,而旅行时间的分布是作出决策的关键}{跨越若干后勤问题}}。{如果有足够的数据,单条路段旅行时间可以大致估计}。 挑战在于了解如何在一条路线上汇总此类信息,以达到旅行时间的路线分配。我们制定了一个新的统计方法来解决这个问题。我们表明,在一般条件下,在不假定速度分布的情况下,旅行时间{按路途距离分列的旅行时间分布在高萨路段的分布上是很少知道的},而旅行时间分布是路途不定的人口和差异的关键}我们为这些参数制定了高效的推论方法,并提出旅行时间间隔要尽可能缩短的人口预测间隔。 使用公路水平信息(例如:交通流量),我们进一步开发出一个针对具体行程的定级尺段的预测时间间隔,从而缩短旅行和长途旅行的预测时间。 我们采用的方法,在一条最精确的轨道上采用的是大规模的预测范围,在实际的轨道上进行这种精确的估测测测测测,从而得出了我们的人口比例。