Convolutional neural networks (CNNs) provide flexible function approximations for a wide variety of applications when the input variables are in the form of images or spatial data. Although CNNs often outperform traditional statistical models in prediction accuracy, statistical inference, such as estimating the effects of covariates and quantifying the prediction uncertainty, is not trivial due to the highly complicated model structure and overparameterization. To address this challenge, we propose a new Bayes approach by embedding CNNs within the generalized linear model (GLM) framework. We use extracted nodes from the last hidden layer of CNN with Monte Carlo dropout as informative covariates in GLM. This improves accuracy in prediction and regression coefficient inference, allowing for the interpretation of coefficient and uncertainty quantification. By fitting ensemble GLMs across multiple realizations from Monte Carlo dropout, we can fully account for uncertainties in model estimation. We apply our methods to simulated and real data examples, including non-Gaussian spatial data, brain tumor image data, and fMRI data. The algorithm can be broadly applicable to image regressions or correlated data analysis by enabling accurate Bayesian inference quickly.
翻译:当输入变量以图像或空间数据的形式出现时,有线电视新闻网(CNN)为各种应用提供了灵活的功能近似值。尽管有线电视新闻网(CNN)往往在预测准确性方面优于传统的统计模型,但由于模型结构非常复杂和参数化过大,因此统计推论,如估计共变效应和量化预测不确定性的影响等,并非微不足道。为了应对这一挑战,我们建议采用一种新的海湾方法,将CNN嵌入普通线性模型(GLM)框架。我们用蒙特卡洛辍学的CNN最后隐蔽层提取的节点作为GLM的信息共变数。这提高了预测和回归系数推论的准确性,从而可以解释系数和不确定性的量化。通过在蒙特卡洛辍学的多重认识中安装共通性GLMs,我们可以充分说明模型估计的不确定性。我们用的方法模拟和真实的数据实例,包括非伽西空间数据、脑肿瘤图像数据以及FRI数据。算法可以广泛适用于图像回归或相关数据分析,从而能够快速精确地进行精确的Bayeserence 。