A well-known challenge in beamforming is how to optimally utilize the degrees of freedom (DoF) of the array to design a robust beamformer, especially when the array DoF is limited. In this paper, we leverage the tool of constrained convex optimization and propose a penalized inequality-constrained minimum variance (P-ICMV) beamformer to address this challenge. Specifically, a well-targeted objective function and inequality constraints are proposed to achieve the design goals. By penalizing the maximum gain of the beamformer at any interfering directions, the total interference power can be efficiently mitigated with limited DoF. Multiple robust constraints on the target protection and interference suppression can be introduced to increase the robustness of the beamformer against steering vector mismatch. By integrating the noise reduction, interference suppression, and target protection, the proposed formulation can efficiently obtain a robust beamformer design while optimally trading off various design goals. To numerically solve this problem, we formulate the P-ICMV beamformer design as a convex second-order cone program (SOCP) and propose a low complexity iterative algorithm based on the alternating direction method of multipliers (ADMM). Three applications are simulated to demonstrate the effectiveness of the proposed beamformer.
翻译:成形方面一个众所周知的挑战是如何最佳地利用阵列的自由度来设计一个强势的光束,特别是在阵列有限的情况下。在本文件中,我们利用限制的松式优化工具,并提议一个受惩罚的不平等限制的最低差异最小值(P-ICMV),以应对这一挑战。具体地说,提出了一个目标明确的目标功能和不平等制约,以实现设计目标。通过惩罚任何干扰方向对阵列的最大利益,可以有效地减轻总干扰力。对目标保护和抑制干扰施加多种强力限制,以提高目标保护与阻力对引导矢量不匹配的稳健性。通过将减少噪音、抑制干扰和目标保护结合起来,拟议的配方可以有效地获得一个稳健的模设计,同时以最佳方式交易各种设计目标。为了从数字上解决这个问题,我们将P-ICMV设计为二阶锥体(SOSCP)调控设计,并提议以交替方向法为基础,采用低复杂性的迭代算法。三种应用是显示变压法的有效性。