Semi-supervised object detection is important for 3D scene understanding because obtaining large-scale 3D bounding box annotations on point clouds is time-consuming and labor-intensive. Existing semi-supervised methods usually employ teacher-student knowledge distillation together with an augmentation strategy to leverage unlabeled point clouds. However, these methods adopt global augmentation with scene-level transformations and hence are sub-optimal for instance-level object detection. In this work, we propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection. In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds, making the augmented data more useful for object detector training. Extensive experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods under various experimental settings. The source code will be available at https://github.com/nomiaro/OPA.
翻译:半监督天体探测对于 3D 场景理解很重要, 因为获得关于点云的大型 3D 边框说明耗时费时费力。 现有的半监督方法通常使用师生知识蒸馏法和增强战略来利用未贴标签的点云。 但是, 这些方法采用带有场景级变换的全球增殖法, 因而是次最佳的( 例如)级天体探测法。 在这项工作中, 我们提议一个目标级点增强器( OPA), 用于进行半监督的 3D 物体探测的本地变换。 这样, 产生的增强器可以强调对象实例, 而不是不相关的背景, 使增强的数据对对象探测器培训更有用。 在扫描网和 SUN RGB- D 数据集上进行的广泛实验显示, 拟议的 OPA 在各种实验环境中的状态- 艺术方法上表现优异。 源代码将在 https://github.com/ nomiaro/ OPA 上提供 。