Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.


翻译:计算机视觉和图像处理是一项基本任务。 目前,基于深层学习的物体探测器在贴有标签的数据方面非常成功。 但是,在现实生活中,不能保证每个物体类别有足够的标签样本来进行培训。这些大型物体探测器在培训数据有限时很容易被过度使用。因此,有必要在物体探测中引入微小的学习和零光学习,这种探测可以同时命名为低发物体探测。低温物体探测(LSOD)旨在从少数甚至零的标签数据中探测物体,这些数据可以分别归类为几发物体探测(FSOD)和零发物体探测(ZSD),本文对基于FSOD和ZSD的深度学习进行了全面调查。首先,这项调查将FSOD和ZSD的方法分为不同类别,并讨论其利弊。第二,这项调查审查FSOD和ZSD的数据集设置和评估指标,然后分析这些基准的不同方法的性能。最后,这项调查讨论了FSOD和ZSD的未来挑战和前景。

21
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
云栖社区
22+阅读 · 2019年4月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
338页新书《Deep Learning in Natural Language Processing》
机器学习算法与Python学习
9+阅读 · 2018年11月6日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Arxiv
16+阅读 · 2021年3月2日
Anomalous Instance Detection in Deep Learning: A Survey
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关VIP内容
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
云栖社区
22+阅读 · 2019年4月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
338页新书《Deep Learning in Natural Language Processing》
机器学习算法与Python学习
9+阅读 · 2018年11月6日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Arxiv
16+阅读 · 2021年3月2日
Anomalous Instance Detection in Deep Learning: A Survey
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Top
微信扫码咨询专知VIP会员