We present a simulation-based approach for solution of mean field games (MFGs), using the framework of empirical game-theoretical analysis (EGTA). Our primary method employs a version of the double oracle, iteratively adding strategies based on best response to the equilibrium of the empirical MFG among strategies considered so far. We present Fictitious Play (FP) and Replicator Dynamics as two subroutines for computing the empirical game equilibrium. Each subroutine is implemented with a query-based method rather than maintaining an explicit payoff matrix as in typical EGTA methods due to a representation issue we highlight for MFGs. By introducing game model learning and regularization, we significantly improve the sample efficiency of the primary method without sacrificing the overall learning performance. Theoretically, we prove that a Nash equilibrium (NE) exists in the empirical MFG and show the convergence of iterative EGTA to NE of the full MFG with either subroutine. We test the performance of iterative EGTA in various games and show that it outperforms directly applying FP to MFGs in terms of iterations of strategy introduction.
翻译:我们利用实证游戏理论分析框架(EGTA)提出一种模拟方法来解决中度野外游戏(MFGs)的模拟方法。我们的主要方法采用一种双极神器的版本,根据对实证MFG在迄今所考虑的战略之间的平衡的最佳反应,迭代地添加战略。我们提出虚幻游戏(FP)和复制动力作为计算实证游戏平衡的两个子路程。每个子路程都采用以查询为基础的方法,而不是像我们为MFGs强调的典型 EGTA方法那样,保持一个明确的回报矩阵。我们采用游戏模型学习和正规化,大大提高主要方法的样本效率,同时不牺牲总体学习绩效。理论上,我们证明经验MFG中存在一种纳什平衡,并表明MFGs全文的迭代EGTA和NENE与两个子路程的结合。我们测试了迭代EGTA在各种游戏中的性功能,并表明它在引入战略时直接将FP直接适用于MGs。