We present a simulation-based approach for solution of mean field games (MFGs), using the framework of empirical game-theoretical analysis (EGTA). Our primary method employs a version of the double oracle, iteratively adding strategies based on best response to the equilibrium of the empirical MFG among strategies considered so far. We present Fictitious Play (FP) and Replicator Dynamics as two subroutines for computing the empirical game equilibrium. Each subroutine is implemented with a query-based method rather than maintaining an explicit payoff matrix as in typical EGTA methods due to a representation issue we highlight for MFGs. By introducing game model learning and regularization, we significantly improve the sample efficiency of the primary method without sacrificing the overall learning performance. Theoretically, we prove that a Nash equilibrium (NE) exists in the empirical MFG and show the convergence of iterative EGTA to NE of the full MFG with either subroutine. We test the performance of iterative EGTA in various games and show that it outperforms directly applying FP to MFGs in terms of iterations of strategy introduction.


翻译:我们利用实证游戏理论分析框架(EGTA)提出一种模拟方法来解决中度野外游戏(MFGs)的模拟方法。我们的主要方法采用一种双极神器的版本,根据对实证MFG在迄今所考虑的战略之间的平衡的最佳反应,迭代地添加战略。我们提出虚幻游戏(FP)和复制动力作为计算实证游戏平衡的两个子路程。每个子路程都采用以查询为基础的方法,而不是像我们为MFGs强调的典型 EGTA方法那样,保持一个明确的回报矩阵。我们采用游戏模型学习和正规化,大大提高主要方法的样本效率,同时不牺牲总体学习绩效。理论上,我们证明经验MFG中存在一种纳什平衡,并表明MFGs全文的迭代EGTA和NENE与两个子路程的结合。我们测试了迭代EGTA在各种游戏中的性功能,并表明它在引入战略时直接将FP直接适用于MGs。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
92+阅读 · 2021年5月17日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2020年12月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员