Social Robotics and Human-Robot Interaction (HRI) research relies on different Affective Computing (AC) solutions for sensing, perceiving and understanding human affective behaviour during interactions. This may include utilising off-the-shelf affect perception models that are pre-trained on popular affect recognition benchmarks and directly applied to situated interactions. However, the conditions in situated human-robot interactions differ significantly from the training data and settings of these models. Thus, there is a need to deepen our understanding of how AC solutions can be best leveraged, customised and applied for situated HRI. This paper, while critiquing the existing practices, presents four critical lessons to be noted by the hitchhiker when applying AC for HRI research. These lessons conclude that: (i) The six basic emotions categories are irrelevant in situated interactions, (ii) Affect recognition accuracy (%) improvements are unimportant, (iii) Affect recognition does not generalise across contexts, and (iv) Affect recognition alone is insufficient for adaptation and personalisation. By describing the background and the context for each lesson, and demonstrating how these lessons have been learnt, this paper aims to enable the hitchhiker to successfully and insightfully leverage AC solutions for advancing HRI research.


翻译:社交机器人和人机交互(HRI)研究依赖于不同的情感计算(AC)解决方案,用于感知和理解人类在交互过程中的情感行为。这可能包括利用预先训练的通用情感识别模型,并将其直接应用于所处的实际情境。然而,交互过程中的条件与这些模型的训练数据和设置存在显著差异。因此,有必要深入了解如何最好地利用、定制和应用AC解决方案用于实践中的HRI。本文针对现有做法进行批判性评价,并提出四个搭便车者应注意的关键教训。这些教训包括:(i)六种基本情感类别在实践中无关紧要,(ii)提高情感识别准确率的百分比改进并不重要,(iii)情感识别无法跨越不同情境实现泛化,以及(iv)仅依靠情感识别是不足以实现自适应和个性化的。通过描述每个教训的背景和背景所在的环境,以及演示这些教训的学习经验,本文旨在让搭便车者成功地和深入地利用AC解决方案来推进HRI研究。

0
下载
关闭预览

相关内容

计算机对从传感器采集来的信号进行分析和处理,从而得出对方(人)正处在的情感状态,这种行为叫做情感识别。
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
VIP会员
相关VIP内容
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员