An assembly of $n$ voters needs to decide on $t$ independent binary issues. Each voter has opinions about the issues, given by a $t$-bit vector. Anscombe's paradox shows that a policy following the majority opinion in each issue may not survive a vote by the very same set of $n$ voters, i.e., more voters may feel unrepresented by such a majority-driven policy than represented. A natural resolution is to come up with a policy that deviates a bit from the majority policy but no longer gets more opposition than support from the electorate. We show that a Hamming distance to the majority policy of at most $\lfloor (t - 1) / 2 \rfloor$ can always be guaranteed, by giving a new probabilistic argument relying on structure-preserving symmetries of the space of potential policies. Unless the electorate is evenly divided between the two options on all issues, we in fact show that a policy strictly winning the vote exists within this distance bound. Our approach also leads to a deterministic polynomial-time algorithm for finding policies with the stated guarantees, answering an open problem of previous work. For odd $t$, unless we are in the pathological case described above, we also give a simpler and more efficient algorithm running in expected polynomial time with the same guarantees. We further show that checking whether distance strictly less than $\lfloor (t - 1) /2 \rfloor$ can be achieved is NP-hard, and that checking for distance at most some input $k$ is FPT with respect to several natural parameters.


翻译:以美元为单位的选民大会需要就美元独立的二元问题做出决定。 每一位选民都对问题有意见, 以美元为单位。 安斯科贝的悖论表明, 遵循每个问题多数人意见的政策, 可能无法通过同样一组美元选民的投票而幸存, 也就是说, 更多的选民可能觉得这种由多数人驱动的政策没有代表的席位。 自然的解决方案是, 产生一种政策, 与多数人政策稍有偏差, 但不会比选民的支持更受到反对。 我们的方法也显示, 与大多数政策之间的距离总是可以保证, 最多为$- 1-1 / 2 美元/ 美元为主体政策之间的距离。 通过给出新的概率论, 依靠保持潜在政策结构的不对称性。 除非选民在所有问题上的两种选项之间有相等的分歧, 我们事实上表明, 严格赢得选票的政策可以在这种距离范围内存在。 我们的方法还导致一种确定性的多元时间算算法, 找到政策, 最多为$-1, / 2 美元为最远的保证, 提供新的概率论, 除非我们用更简单的算算出一个简单的逻辑, 。</s>

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2021年3月10日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员