Weakly-supervised semantic segmentation (WSSS) using image-level labels has recently attracted much attention for reducing annotation costs. Existing WSSS methods utilize localization maps from the classification network to generate pseudo segmentation labels. However, since localization maps obtained from the classifier focus only on sparse discriminative object regions, it is difficult to generate high-quality segmentation labels. To address this issue, we introduce discriminative region suppression (DRS) module that is a simple yet effective method to expand object activation regions. DRS suppresses the attention on discriminative regions and spreads it to adjacent non-discriminative regions, generating dense localization maps. DRS requires few or no additional parameters and can be plugged into any network. Furthermore, we introduce an additional learning strategy to give a self-enhancement of localization maps, named localization map refinement learning. Benefiting from this refinement learning, localization maps are refined and enhanced by recovering some missing parts or removing noise itself. Due to its simplicity and effectiveness, our approach achieves mIoU 71.4% on the PASCAL VOC 2012 segmentation benchmark using only image-level labels. Extensive experiments demonstrate the effectiveness of our approach. The code is available at https://github.com/qjadud1994/DRS.
翻译:由于从分类器中获得的本地化地图仅侧重于分散的歧视性对象区域,因此很难生成高质量的本地化分类标签。为了解决这一问题,我们引入了歧视区域抑制模块,这是扩大物体激活区域的一个简单而有效的方法。DRS抑制了对歧视区域的关注,将其分散到邻近的非异化区域,生成了密集的本地化地图。DRS需要的参数很少或没有额外的参数,并且可以插入任何网络。此外,我们引入了额外的学习战略,使本地化地图的自我强化,称为本地化地图的完善学习。从这一精细学习中受益,本地化地图通过恢复某些缺失的部分或消除噪音本身而得到完善和加强。由于其简单和有效性,我们的方法在 PASAL VADR/DRM 方法上实现了 mIU 71.4% 。我们的方法在2012年的广域化图像分类中只能使用 VASCAL/MARBS 。