In this paper, we propose a simple but effective semantic-based aggregation (SBA) method. The proposed SBA utilizes the discriminative filters of deep convolutional layers as semantic detectors. Moreover, we propose the effective unsupervised strategy to select some semantic detectors to generate the "probabilistic proposals", which highlight certain discriminative pattern of objects and suppress the noise of background. The final global SBA representation could then be acquired by aggregating the regional representations weighted by the selected "probabilistic proposals" corresponding to various semantic content. Our unsupervised SBA is easy to generalize and achieves excellent performance on various tasks. We conduct comprehensive experiments and show that our unsupervised SBA outperforms the state-of-the-art unsupervised and supervised aggregation methods on image retrieval, place recognition and cloud classification.
翻译:在本文中,我们提出了一个简单而有效的语义汇总方法(SBA) 。 拟议的SBA使用深层革命层的歧视性过滤器作为语义检测器。 此外,我们提出一个有效的、不受监督的战略,选择一些语义检测器,以产生“概率建议 ”, 以突出某些有区别的物体模式并抑制背景噪音。 最终的全球SBA代表制可以通过汇总区域代表制获得,区域代表制由与各种语义内容相对应的选定“概率建议”加权。 我们不受监督的SBA很容易在各种任务上加以普及并取得优异性表现。 我们进行全面实验,并表明我们未经监督的SBA在图像检索、地点识别和云层分类方面超越了最先进的不受监督和监督的集成方法。