Deep learning has enabled realistic face manipulation (i.e., deepfake), which poses significant concerns over the integrity of the media in circulation. Most existing deep learning techniques for deepfake detection can achieve promising performance in the intra-dataset evaluation setting (i.e., training and testing on the same dataset), but are unable to perform satisfactorily in the inter-dataset evaluation setting (i.e., training on one dataset and testing on another). Most of the previous methods use the backbone network to extract global features for making predictions and only employ binary supervision (i.e., indicating whether the training instances are fake or authentic) to train the network. Classification merely based on the learning of global features leads often leads to weak generalizability to unseen manipulation methods. In addition, the reconstruction task can improve the learned representations. In this paper, we introduce a novel approach for deepfake detection, which considers the reconstruction and classification tasks simultaneously to address these problems. This method shares the information learned by one task with the other, which focuses on a different aspect other existing works rarely consider and hence boosts the overall performance. In particular, we design a two-branch Convolutional AutoEncoder (CAE), in which the Convolutional Encoder used to compress the feature map into the latent representation is shared by both branches. Then the latent representation of the input data is fed to a simple classifier and the unsupervised reconstruction component simultaneously. Our network is trained end-to-end. Experiments demonstrate that our method achieves state-of-the-art performance on three commonly-used datasets, particularly in the cross-dataset evaluation setting.
翻译:深层学习使得现实的面对面操作(即深假)成为了现实的面对面操作(即深假),这给媒体在流通中的完整性提出了重大关切。大部分现有的深假探测深假检测的深层学习技术可以在数据库内部评价环境中取得有希望的绩效(即在同一数据集上进行培训和测试),但无法在数据内部评价环境中令人满意地进行(即在同一数据集上进行培训和测试另一个数据集上),以往的大多数方法都利用主干网络提取全球功能进行预测,而只使用二元监督(即表明培训实例是假的还是真实的)来培训网络。仅仅根据全球特征的学习进行分类往往导致对隐蔽操作方法的不易操作性进行分类。此外,重建任务可以改进所学的表述方式。在本文件中,我们引入了一种新的深假检测方法,即考虑一个数据集的重建和分类任务同时解决这些问题。这一方法将一项任务所学到的信息与另一个任务共享,侧重于另一个不同的方面,即现有的工作很少考虑,从而提升总体绩效。特别是,我们设计了一个共同的CEAR-C-C-C-SO-SO-O-C-O-O-O-O-O-O-O-O-OD-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O