Existing deep learning-based hyperspectral image (HSI) classification works still suffer from the limitation of the fixed-sized receptive field, leading to difficulties in distinctive spectral-spatial features for ground objects with various sizes and arbitrary shapes. Meanwhile, plenty of previous works ignore asymmetric spectral-spatial dimensions in HSI. To address the above issues, we propose a multi-stage search architecture in order to overcome asymmetric spectral-spatial dimensions and capture significant features. First, the asymmetric pooling on the spectral-spatial dimension maximally retains the essential features of HSI. Then, the 3D convolution with a selectable range of receptive fields overcomes the constraints of fixed-sized convolution kernels. Finally, we extend these two searchable operations to different layers of each stage to build the final architecture. Extensive experiments are conducted on two challenging HSI benchmarks including Indian Pines and Houston University, and results demonstrate the effectiveness of the proposed method with superior performance compared with the related works.
翻译:现有基于深层学习的超光谱图像(HSI)分类工作仍因固定尺寸可接收场的局限性而受到影响,导致不同大小和任意形状的地面物体在独特的光谱空间特征方面遇到困难,同时,许多以前的工作忽略了HSI的不对称光谱空间层面。为了解决上述问题,我们提议建立一个多阶段搜索结构,以克服非对称光谱空间层面和捕捉重要特征。首先,光谱空间层面的不对称共享最大程度上保留了HSI的基本特征。然后,3D与一系列可选择的可接收场的相交,克服了固定大小的电动内核的限制。最后,我们将这两个可搜索作业扩大到每个阶段的不同层,以建立最终结构。对包括印度派恩斯大学和休斯敦大学在内的两个具有挑战性的HSI基准进行了广泛的实验,结果表明拟议方法与相关工程相比具有优异性的有效性。