We study the training of deep neural networks by gradient descent where floating-point arithmetic is used to compute the gradients. In this framework and under realistic assumptions, we demonstrate that it is highly unlikely to find ReLU neural networks that maintain, in the course of training with gradient descent, superlinearly many affine pieces with respect to their number of layers. In virtually all approximation theoretical arguments which yield high order polynomial rates of approximation, sequences of ReLU neural networks with exponentially many affine pieces compared to their numbers of layers are used. As a consequence, we conclude that approximating sequences of ReLU neural networks resulting from gradient descent in practice differ substantially from theoretically constructed sequences. The assumptions and the theoretical results are compared to a numerical study, which yields concurring results.
翻译:我们研究深神经网络的深层神经网络的深层梯度下降,使用浮点计算法来计算梯度。在这个框架和现实假设下,我们证明极不可能找到在梯度下降培训过程中保持与其层数有关的超线性大量线性神经网络。几乎所有近似理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论和理论理论理论理论理论理论理论理论理论理论理论理论理论和理论理论理论理论理论理论理论理论理论理论和理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论和理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论理论