Deep graph neural networks (GNNs) have achieved excellent results on various tasks on increasingly large graph datasets with millions of nodes and edges. However, memory complexity has become a major obstacle when training deep GNNs for practical applications due to the immense number of nodes, edges, and intermediate activations. To improve the scalability of GNNs, prior works propose smart graph sampling or partitioning strategies to train GNNs with a smaller set of nodes or sub-graphs. In this work, we study reversible connections, group convolutions, weight tying, and equilibrium models to advance the memory and parameter efficiency of GNNs. We find that reversible connections in combination with deep network architectures enable the training of overparameterized GNNs that significantly outperform existing methods on multiple datasets. Our models RevGNN-Deep (1001 layers with 80 channels each) and RevGNN-Wide (448 layers with 224 channels each) were both trained on a single commodity GPU and achieve an ROC-AUC of $87.74 \pm 0.13$ and $88.14 \pm 0.15$ on the ogbn-proteins dataset. To the best of our knowledge, RevGNN-Deep is the deepest GNN in the literature by one order of magnitude. Please visit our project website https://www.deepgcns.org/arch/gnn1000 for more information.


翻译:深图神经网络(GNNs)在使用数百万节点和边缘的日益庞大的图表数据集方面,在各种任务中取得了优异的成果。然而,由于节点、边缘和中间激活的数量之多,在为实际应用而培训深度GNNs时,记忆复杂性已成为一个主要障碍。为了提高GNNs的可缩放性,先前的工作提议了智能图形抽样或分区战略,用一套较小的节点或子图来培训GNNs(448层,每个224个频道)。在这项工作中,我们研究可逆连接、群群变、加权和平衡模型,以提高GNNNNS的记忆和参数效率。我们发现,与深网络结构相结合的可逆连接,使得对大大超出多数据集现有方法的多度分解的GNNNNs的培训成为了一大障碍。我们的模型RevGNNN-Deep(1001层,每个频道80个频道)和RevGNNN-Wide(448层,每个频道224个频道)都接受了单一商品GPUPUP,并实现了8.74cm0.13美元的ROC-pm0.13美元和8.14美元最深的ROGNNNNNS)的ROGNS-MNS_0.15的搜索项目。我们最深的0.15的0.15的搜索。

13
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
40+阅读 · 2020年9月27日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
14+阅读 · 2021年7月20日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员