Model extraction is a major threat for embedded deep neural network models that leverages an extended attack surface. Indeed, by physically accessing a device, an adversary may exploit side-channel leakages to extract critical information of a model (i.e., its architecture or internal parameters). Different adversarial objectives are possible including a fidelity-based scenario where the architecture and parameters are precisely extracted (model cloning). We focus this work on software implementation of deep neural networks embedded in a high-end 32-bit microcontroller (Cortex-M7) and expose several challenges related to fidelity-based parameters extraction through side-channel analysis, from the basic multiplication operation to the feed-forward connection through the layers. To precisely extract the value of parameters represented in the single-precision floating point IEEE-754 standard, we propose an iterative process that is evaluated with both simulations and traces from a Cortex-M7 target. To our knowledge, this work is the first to target such an high-end 32-bit platform. Importantly, we raise and discuss the remaining challenges for the complete extraction of a deep neural network model, more particularly the critical case of biases.
翻译:模型提取是内嵌深神经网络模型的一个主要威胁,这些模型利用了超长攻击表面。 事实上,通过物理访问设备,对手可能利用侧道渗漏来提取模型的关键信息(即其结构或内部参数)。不同的对抗目标是可能的,包括基于忠诚的假设情景,其中结构和参数精确地提取(模拟克隆)。我们把这项工作的重点放在高端32位微控制器(Cortex-M7)中嵌入的深神经网络的软件应用上,并暴露了与通过侧通道分析、从基本的倍增操作到进向前连接层的侧通道提取参数相关的若干挑战。为了精确地提取单精度浮浮浮浮点IEEE-754标准中代表的参数的价值,我们提议一个互动进程,通过模拟和从Cortex-M7目标的痕迹进行评估。 据我们所知,这项工作首先针对这样一个高端32位平台。我们提出并讨论彻底提取深层神经网络模型的剩余挑战,特别是关键偏向性模型。