We give a $2^{\tilde{O}(\sqrt{n}/\epsilon)}$-time algorithm for properly learning monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Our algorithm is robust to adversarial label noise and has a running time nearly matching that of the state-of-the-art improper learning algorithm of Bshouty and Tamon (JACM '96) and an information-theoretic lower bound of Blais et al (RANDOM '15). Prior to this work, no proper learning algorithm with running time smaller than $2^{\Omega(n)}$ was known to exist. The core of our proper learner is a \emph{local computation algorithm} for sorting binary labels on a poset. Our algorithm is built on a body of work on distributed greedy graph algorithms; specifically we rely on a recent work of Ghaffari (FOCS'22), which gives an efficient algorithm for computing maximal matchings in a graph in the LCA model of Rubinfeld et al and Alon et al (ICS'11, SODA'12). The applications of our local sorting algorithm extend beyond learning on the Boolean cube: we also give a tolerant tester for Boolean functions over general posets that distinguishes functions that are $\epsilon/3$-close to monotone from those that are $\epsilon$-far. Previous tolerant testers for the Boolean cube only distinguished between $\epsilon/\Omega(\sqrt{n})$-close and $\epsilon$-far.
翻译:我们提出了一种在$\{0,1\}^n$上的均匀分布下学习单调布尔函数的$2^{\tilde{O}(\sqrt{n}/\epsilon)}$时间算法。我们的算法对抗标签噪声具有鲁棒性,并且运行时间几乎与Bshouty和Tamon(JACM'96)的最先进的不正确学习算法和Blais等人(RANDOM'15)的信息理论下界匹配。在此工作之前,不存在运行时间小于$2^{\Omega(n)}$的正确学习算法。我们的正确性学习器的核心是针对偏序列上二进制标签排序的局部计算算法。我们的算法建立在分布式贪婪图算法的研究基础上。具体而言,我们依赖于Ghaffari(FOCS'22)的最近工作,该工作提供了一种在Rubinfeld等人和Alon等人(ICS'11,SODA'12)的LCA模型中计算图中最大匹配的有效算法。我们局部排序算法的应用超出了在布尔立方体上的学习,我们还提供了在一般偏序列上对布尔函数进行容错测试的方法,该方法区分了与单调函数$\epsilon/3$接近的函数和远离$\epsilon$的函数。以前的容错测试器只能区分$\epsilon/\Omega(\sqrt{n})$接近和$\epsilon$远离的差异。