To learn directed behaviors in complex environments, intelligent agents need to optimize objective functions. Various objectives are known for designing artificial agents, including task rewards and intrinsic motivation. However, it is unclear how the known objectives relate to each other, which objectives remain yet to be discovered, and which objectives better describe the behavior of humans. We introduce the Action Perception Divergence (APD), an approach for categorizing the space of possible objective functions for embodied agents. We show a spectrum that reaches from narrow to general objectives. While the narrow objectives correspond to domain-specific rewards as typical in reinforcement learning, the general objectives maximize information with the environment through latent variable models of input sequences. Intuitively, these agents use perception to align their beliefs with the world and use actions to align the world with their beliefs. They infer representations that are informative of past inputs, explore future inputs that are informative of their representations, and select actions or skills that maximally influence future inputs. This explains a wide range of unsupervised objectives from a single principle, including representation learning, information gain, empowerment, and skill discovery. Our findings suggest leveraging powerful world models for unsupervised exploration as a path toward highly adaptive agents that seek out large niches in their environments, rendering task rewards optional.


翻译:为了在复杂环境中学习定向行为,智能代理人需要优化客观功能。设计人工代理的各种目标,包括任务奖赏和内在动机,是众所周知的。然而,尚不清楚已知目标彼此之间有何关联,哪些目标仍有待发现,哪些目标更能描述人类的行为。我们引入了“行动认知差异”(APD),这是对被显示代理人可能客观功能的空间进行分类的一种方法。我们展示了从狭义到一般目标的频谱。虽然狭隘目标与强化学习中典型的特定领域奖励相对应,但一般目标通过潜在的投入序列变异模型最大限度地利用环境信息。从直觉上看,这些代理人利用认知使其信仰与世界保持一致,并利用行动使其世界与其信仰相一致。他们推断出对过去投入有丰富内容的表述,探索其表述内容的未来投入,并选择对未来投入产生最大影响的行动或技能。这解释了从单一原则(包括代表性学习、信息获取、赋权和技能发现)中产生广泛不受控制的目标,包括代表性学习、信息获取、技能发现。我们的发现结论表明,在不严密的世界模型中利用强势世界模型将自身定位作为高度适应性的定位的定位,从而追求高度适应性任务。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
15+阅读 · 2021年5月21日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员