项目名称: 基于语义理解的高分辨率遥感图像变化分析方法研究
项目编号: No.61302170
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 无线电电子学、电信技术
项目作者: 陈克明
作者单位: 中国科学院电子学研究所
项目金额: 23万元
中文摘要: 随着遥感图像空间和时间分辨率的不断提升,图像中蕴含的语义信息越发丰富,基于语义理解的高分辨率遥感图像分析及应用的重要性日渐凸显。本项目针对高分辨率遥感图像视觉特征多样性和语义信息丰富性,从图像语义目标的视觉表征出发,分析目标对象底层视觉特征到高层语义信息的映射途径,重点研究高分辨率遥感图像中典型地物目标对象之间的语义约束关系表征方式;针对高分辨率遥感图像中单个目标语义信息的局限性和多个目标语义信息的复杂性,以场景语义理解为目的,研究基于超图模型的复杂语义约束关系网构建方法,并结合半监督学习方法,完成语义变化信息的主动传递;针对语义表达的模糊性和认知应用的精确性,面向认知理解,通过目标物理层变化信息与语义层次变化信息有机结合,实现对变化信息的精细化解译,并探索典型目标变化信息分析与专家知识推理协同模式,增强对目标动向情况的简单推理能力,提升高分辨率遥感图像变化分析的应用价值。
中文关键词: 变化分析;语义理解;超图模型;精细化;高分辨率遥感图像时间序列
英文摘要: With the increasing improvements in spatial resolution and temporal resolution, there is more and more semantic information contained in high resolution (HR) remote sensing images, so semantic understanding based HR remote sensing imagery change analysis becomes more and more important. However, the sophisticated imagery scene and various target semantic information cause the change detection for HR remote sensing images even more difficult compared with low/medium resolution images. This program tries to propose new algorithms for HR remote sensing imagery change information fine analysis on the foundation of image semantic understanding. To this end, we first thoroughly investigate the possible ways to define and describe the high-level object semantic information in the complex scene by making full use of the abundant image low-level visual features. Then, we build a hypergraph instead of a pairwise graph to model the various semantic relationships among the image objects. In this way, a semantic relation network is constructed by expressing the semantic relationships quantitatively. Moreover, to take advantages of the large quantity of unlabeled samples, semi-supervised graph-based learning is adopted and labels are iteratively propagated to the unlabeled samples on the graph guided by an energy function wit
英文关键词: Change Analysis;Semantic Understanding;Hypergraph Model;Change Information Fine Analysis;High Resolution Satellite Image Time Series