The Model Order Reduction (MOR) technique can provide compact numerical models for fast simulation. Different from the intrusive MOR methods, the non-intrusive MOR does not require access to the Full Order Models (FOMs), especially system matrices. Since the non-intrusive MOR methods strongly rely on the snapshots of the FOMs, constructing good snapshot sets becomes crucial. In this work, we propose a new active learning approach with two novelties. A novel idea with our approach is the use of single-time step snapshots from the system states taken from an estimation of the reduced-state space. These states are selected using a greedy strategy supported by an error estimator based Gaussian Process Regression (GPR). Additionally, we introduce a use case-independent validation strategy based on Probably Approximately Correct (PAC) learning. In this work, we use Artificial Neural Networks (ANNs) to identify the Reduced Order Model (ROM), however the method could be similarly applied to other ROM identification methods. The performance of the whole workflow is tested by a 2-D thermal conduction and a 3-D vacuum furnace model. With little required user interaction and a training strategy independent to a specific use case, the proposed method offers a huge potential for industrial usage to create so-called executable Digital Twins (DTs).
翻译:减少命令模式(MOR)技术可以为快速模拟提供紧凑的数字模型。 不同于侵扰性摩尔方法, 非侵扰性摩尔不需要使用全序模型(FOMS), 特别是系统矩阵。 由于非侵扰性摩尔方法强烈依赖FOMS的快照, 构建良好的快照组变得至关重要。 在这项工作中, 我们提出一种新的积极学习方法, 有两个新颖之处。 我们的方法中的新想法是使用系统国家从对减少状态空间的估计中得出的单时间步骤快照。 这些国家采用贪婪的战略, 由基于高山进程回归的误差估计仪(GPR)支持。 此外, 我们引入了一种基于可能大致正确(PAC)学习的个案独立验证战略。 在这项工作中, 我们使用人工神经网络(ANNNS)来确定减序模型(ROM), 但是该方法可以类似地适用于其他ROM识别方法。 整个工作流程的性能通过2- 热操控和3-D 真空进程(GPOL) 测试, 一种基于可能创建的、 数字化的、 数字化、 数字化、 方法, 需要的、 数字化、 数字化、 数字化、 和数字化、 数字化、 格式的模型的模型, 所需的、 和数字- 和数字- 数字- D- D- 数字互动模式。