We study the formula complexity of the word problem $\mathsf{Word}_{S_n,k} : \{0,1\}^{kn^2} \to \{0,1\}$: given $n$-by-$n$ permutation matrices $M_1,\dots,M_k$, compute the $(1,1)$-entry of the matrix product $M_1\cdots M_k$. An important feature of this function is that it is invariant under action of $S_n^{k-1}$ given by \[ (\pi_1,\dots,\pi_{k-1})(M_1,\dots,M_k) = (M_1\pi_1^{-1},\pi_1M_2\pi_2^{-1},\dots,\pi_{k-2}M_{k-1}\pi_{k-1}^{-1},\pi_{k-1}M_k). \] This symmetry is also exhibited in the smallest known unbounded fan-in $\{\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-formulas for $\mathsf{Word}_{S_n,k}$, which have size $n^{O(\log k)}$. In this paper we prove a matching $n^{\Omega(\log k)}$ lower bound for $S_n^{k-1}$-invariant formulas computing $\mathsf{Word}_{S_n,k}$. This result is motivated by the fact that a similar lower bound for unrestricted (non-invariant) formulas would separate complexity classes $\mathsf{NC}^1$ and $\mathsf{Logspace}$. Our more general main theorem gives a nearly tight $n^{d(k^{1/d}-1)}$ lower bound on the $G^{k-1}$-invariant depth-$d$ $\{\mathsf{MAJ},\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-formula size of $\mathsf{Word}_{G,k}$ for any finite simple group $G$ whose minimum permutation representation has degree~$n$. We also give nearly tight lower bounds on the $G^{k-1}$-invariant depth-$d$ $\{\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-formula size in the case where $G$ is an abelian group.
翻译:我们研究了单词复杂性 $\ masf{Word}{Word}{S_k}} : $0, 1\kn}\ to <%0, 1}\\\\\美元 美元: 如果按美元计算基质$M_1,\dts, m_k$, 计算基质产品$(1, 1美元) 美元( 1, 1\cd} m_k) 美元。 此函数的一个重要特征是, 在 $_n\k} s@k} -1} 操作下, $_n@k} 美元: [(pi_ 1,\k} 美元,\k} 4} 美元(美元) 0. 1\k} 美元(美元) 美元(美元) 元(美元) 元(美元) 美元(美元) 美元(美元), 美元(%\\\\\\\\\\\\ kk} 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 。