The geometric optimisation of crystal structures is a procedure widely used in Chemistry that changes the geometrical placement of the particles inside a structure. It is called structural relaxation and constitutes a local minimization problem with a non-convex objective function whose domain complexity increases along with the number of particles involved. In this work we study the performance of the two most popular first order optimisation methods, Gradient Descent and Conjugate Gradient, in structural relaxation. The respective pseudocodes can be found in Section 6. Although frequently employed, there is a lack of their study in this context from an algorithmic point of view. In order to accurately define the problem, we provide a thorough derivation of all necessary formulae related to the crystal structure energy function and the function's differentiation. We run each algorithm in combination with a constant step size, which provides a benchmark for the methods' analysis and direct comparison. We also design dynamic step size rules and study how these improve the two algorithms' performance. Our results show that there is a trade-off between convergence rate and the possibility of an experiment to succeed, hence we construct a function to assign utility to each method based on our respective preference. The function is built according to a recently introduced model of preference indication concerning algorithms with deadline and their run time. Finally, building on all our insights from the experimental results, we provide algorithmic recipes that best correspond to each of the presented preferences and select one recipe as the optimal for equally weighted preferences.
翻译:晶体结构的几何优化是化学中广泛使用的一种程序,它改变了粒子在结构中的几何定位。 它被称为结构放松, 并构成局部最小化问题, 由非convex目标功能构成, 其领域复杂性随着所涉粒子的数量而增加。 在这项工作中, 我们研究两种最受欢迎的第一顺序优化方法的性能, 在结构放松中, 梯度潜伏法和共振梯度法的性能。 不同的伪码可以在第6节中找到。 虽然经常使用, 但从算法角度看它们在这方面缺乏研究。 为了准确界定问题, 我们提供了与晶体结构能源功能和函数差异相关的所有必要公式的彻底衍生。 我们每一种算法结合一个固定的步数大小, 为方法的分析与直接比较提供了基准。 我们还设计了动态的步数规则, 并研究这些方法如何改进两种算法的性能。 我们的结果表明, 趋同的趋同率率率和实验成功的可能性之间存在着权衡。 因此, 为了准确界定与晶体结构的每一种方法的效用, 我们根据各自的偏差最终的推论结果, 提供了一种功能。