A dynamic graph algorithm is a data structure that answers queries about a property of the current graph while supporting graph modifications such as edge insertions and deletions. Prior work has shown strong conditional lower bounds for general dynamic graphs, yet graph families that arise in practice often exhibit structural properties that the existing lower bound constructions do not possess. We study three specific graph families that are ubiquitous, namely constant-degree graphs, power-law graphs, and expander graphs, and give the first conditional lower bounds for them. Our results show that even when restricting our attention to one of these graph classes, any algorithm for fundamental graph problems such as distance computation or approximation or maximum matching, cannot simultaneously achieve a sub-polynomial update time and query time. For example, we show that the same lower bounds as for general graphs hold for maximum matching and ($s,t$)-distance in constant-degree graphs, power-law graphs or expanders. Namely, in an $m$-edge graph, there exists no dynamic algorithms with both $O(m^{1/2 - \epsilon})$ update time and $ O(m^{1 -\epsilon})$ query time, for any small $\epsilon > 0$. Note that for ($s,t$)-distance the trivial dynamic algorithm achieves an almost matching upper bound of constant update time and $O(m)$ query time. We prove similar bounds for the other graph families and for other fundamental problems such as densest subgraph detection and perfect matching.
翻译:动态图形算法是一个解答当前图表属性的数据结构, 它既能解答对当前图表属性的查询, 同时又支持边缘插入和删除等图形修改。 先前的工作显示, 普通动态图形有很强的有条件的下限, 但实际中产生的图形家庭往往具有现有较低约束构造不拥有的结构性属性。 我们研究三个特定的图形家庭, 即常度图形、 电法图形、 扩展图或扩展图, 并给出它们的第一个条件性下限 。 我们的结果显示, 即便将我们注意力限制在这些图形类别中的一个, 任何基本图形问题的算法, 如远程计算或近似或最大匹配等, 也无法同时实现亚球性更新的时间和查询时间 。 例如, 我们显示, 在常度图形、 电法图形或扩展图中, 三个特定的图形家族, 也就是恒定度、 电法图或扩展图中, 。 也就是说, 在 $O% 2 - 其他直径 的直径直径直径, 直值 直径直径直值直径直径直径直径直的直算算算算算算算算算。