项目名称: 随机矩阵理论中Beta系综的特征多项式
项目编号: No.11301499
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 刘党政
作者单位: 中国科学技术大学
项目金额: 23万元
中文摘要: 特征多项式是随机矩阵理论中的重要研究对象。本项目将利用Jack多项式这一有力工具来研究典型beta系综中特征多项式的渐近性质,拟做以下两个方面的问题: (1)N阶带外场的高斯和chiral高斯beta系综的特征多项式乘积。由于外场的存在,N趋于无穷时的局部极限预计会出现相变现象。为此需要进一步发展申请人同合作者引入的Selberg型多元积分的鞍点分析方法。 (2)4个典型矩阵系综:Hermite、Laguerre、Jacobi、circular beta系综特征多项式的乘积比。它与Dotsenko-Fateev型积分密切相关,而分析其渐近性质的关键是探寻相应的积分对偶表达公式和发展此类积分的鞍点分析。 本项目通过对典型系综的研究来寻找特征多项式的极限普适型和加深对随机矩阵理论中普适性问题的理解,并希望有助于一般位势下beta系综相关问题的研究。
中文关键词: 随机矩阵;特征多项式;普适性;极限定理;
英文摘要: Characteristic polynomials are important objects in Random Matrix Theory. This project is concerned with asymptotic properties of characterist- ic polynomials for classical beta-ensembles, based on Jack polynomial theory. We will mainly consider the following two problems: (1) The Gaussian and chiral Gaussian ensembles with external source. Scaling limits for the expectation of products of characteristic polynomials will be calculated as the matrix order N tends to infinity. The phase transitions will probably occur because of the external source, which will be based on Jack polynomial theory and the saddle-point method for Selberg-type integrals. (2) The ratios of products of characteritic polynomials for classical random matrix ensembles: Hermite(Gauss)、Laguerre (chiral)、Jacobi、circular beta-ensembles. The main goal is to study local limits of the ratios and related integrals of Dotsenko-Fateev type. We plan to find a dulity formula and then do asymptotic ananlysis. The goal of this project is to find local limits of characteristic polynomials through the study of classical ensembles, and to explore universality conjecture for random matrices. Further understanding of beta ensembles will be deeply expected.
英文关键词: Random matrices;Characteristic polynomials;Universality;Limit theorem;