The hybrid high-order method is a modern numerical framework for the approximation of elliptic PDEs. We present here an extension of the hybrid high-order method to meshes possessing curved edges/faces. Such an extension allows us to enforce boundary conditions exactly on curved domains, and capture curved geometries that appear internally in the domain e.g. discontinuities in a diffusion coefficient. The method makes use of non-polynomial functions on the curved faces and does not require any mappings between reference elements/faces. Such an approach does not require the faces to be polynomial, and has a strict upper bound on the number of degrees of freedom on a curved face for a given polynomial degree. Moreover, this approach of enriching the space of unknowns on the curved faces with non-polynomial functions should extend naturally to other polytopal methods. We show the method to be stable and consistent on curved meshes and derive optimal error estimates in $L^2$ and energy norms. We present numerical examples of the method on a domain with curved boundary, and for a diffusion problem such that the diffusion tensor is discontinuous along a curved arc.
翻译:混合高阶法是接近椭圆形 PDE 的现代数字框架。 我们在此展示混合高阶法的延伸, 包括拥有曲线边缘/ 面部的螺旋形。 这样的延伸使我们能够在曲线域内执行边界条件, 并捕捉在曲线域内出现的曲线形地理分布, 如扩散系数中的不连续性。 这种方法使用曲线面部的非球状函数, 不需要在参考元素/ 面部之间绘制任何地图。 这种方法并不要求面部是多元的, 并且对于一个曲线面部的曲线面部自由度有严格的上限。 此外, 将曲线面部的未知空间与非球形功能相加的这一方法应该自然延伸至其他多调方位法。 我们展示了在曲线色线上的稳定性和一致性方法, 并得出以 $L%2 和 能源 规范为单位的最佳误差估计值。 我们在一个曲线域上展示了该方法的数字示例, 并且对于一个曲线形面部域上的自由度的宽度有一定的宽度。 对于扩散问题来说, 扩散曲线是一条稳定的反向的曲线。