Gaussian boson sampling, a computational model that is widely believed to admit quantum supremacy, has already been experimentally demonstrated to surpasses the classical simulation capabilities of even with the most powerful supercomputers today. However, whether the current approach limited by photon loss and noise in such experiments prescribes a scalable path to quantum advantage is an open question. For example, random circuit sampling with constant noise per gate was recently shown not to be a scalable approach to achieve quantum supremacy, although simulating intermediate scale systems is still difficult. To understand the effect of photon loss on the scability of Gaussian boson sampling, we use a tensor network algorithm with $U(1)$ symmetry to examine the asymptotic operator entanglement entropy scaling, which relates to the simulation complexity. We develop a custom-built algorithm that significantly reduces the computational time with state-of-the-art hardware accelerators, enabling simulations of much larger systems. With this capability, we observe, for Gaussian boson sampling, the crucial $N_\text{out}\propto\sqrt{N}$ scaling of the number of surviving photons in the number of input photons that marks the boundary between efficient and inefficient classical simulation. We further theoretically show that this should be general for other input states.


翻译:Gausian boson 取样是广泛认为承认量子至上的一种计算模型,已经实验地证明它超越了即使是今天最强大的超级计算机的古典模拟能力。然而,目前这种实验中受光子丢失和噪音限制的方法是否为量子优势提供了可伸缩的途径是一个尚未解决的问题。例如,最近显示,每扇门有恒定噪音的随机电路取样并不是实现量子优势的一种可伸缩的方法,尽管模拟中等规模系统仍然困难。为了理解光子丢失对高斯波森取样的可采性的影响,我们用美元(1美元)的对称法使用高尔网络算法来检查与模拟复杂性有关的无药操作者缠绕的刻度缩缩缩缩。我们开发了一种定制的算法,大大缩短了每扇门恒定噪音的计算时间,使得对大得多的系统进行模拟。有了这种能力,我们观察到,高斯波森取样对高斯取样的可靠性具有关键作用,我们用美元($*propto) press\\\\\ sqromprialimalimal mal mal mess press press press press maxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平的图像数。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
49+阅读 · 2022年10月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员