This paper presents a new strategy to deal with the excessive diffusion that standard finite volume methods for compressible Euler equations display in the limit of low Mach number. The strategy can be understood as using centered discretizations for the acoustic part of the Euler equations and stabilizing them with a leap-frog-type ("sequential explicit") time integration, a fully explicit method. This time integration takes inspiration from time-explicit staggered grid numerical methods. In this way, advantages of staggered methods carry over to collocated methods. The paper provides a number of new collocated schemes for linear acoustic/Maxwell equations that are inspired by the Yee scheme. They are then extended to an all-speed method for the full Euler equations on Cartesian grids. By taking the opposite view and taking inspiration from collocated methods, the paper also suggests a new way of staggering the variables which increases the stability as compared to the traditional Yee scheme.
翻译:本文提出了一个新策略, 以应对在低 Mach 数字限制下显示的压缩 Euler 方程式标准限制量的过度扩散。 这个策略可以被理解为在 Euler 方程式的音响部分使用中央离散法, 并用跳式( “ 顺序清晰”) 时间整合来稳定它们, 这是一种完全清晰的方法。 这个时间整合会从时间表达式错开的网格数字方法中得到启发。 这样, 错开法的优势会传到对齐方法中。 本文提供了由 Yee 方案启发的线性声学/ Maxwell 方程式的多个新合用方案。 然后它们会扩展为卡尔提斯方程式全 Euler 方程式的全速法。 通过截取相反的视图和从合用法的灵感, 本文还提出了一种新办法, 将增加稳定性的变量与传统的 Yee 方程式相比, 。