For two correlated graphs which are independently sub-sampled from a common Erd\H{o}s-R\'enyi graph $\mathbf{G}(n, p)$, we wish to recover their \emph{latent} vertex matching from the observation of these two graphs \emph{without labels}. When $p = n^{-\alpha+o(1)}$ for $\alpha\in (0, 1]$, we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.
翻译:对于从共同的 Erd\H{o}s-R\'enyi 图形 $\ mathbf{G}(n, p) 中独立提取的两个相关图表,我们希望从这两个图形的观测中回收匹配的 emph{latent} 顶点。 当$p = n ⁇ \\\\ alpha+o(1)} $\ alpha\ in (0, 1) 时, 我们建立一个清晰的信息理论阈值, 以确定能否正确匹配一个正数的顶点。 我们的结果使吴、 Xu 和 Yu 最近的工作有一个恒定因素。