Let $\mathcal{F}$ be a family of graphs, and let $p,r$ be nonnegative integers. The \textsc{$(p,r,\mathcal{F})$-Covering} problem asks whether for a graph $G$ and an integer $k$, there exists a set $D$ of at most $k$ vertices in $G$ such that $G^p\setminus N_G^r[D]$ has no induced subgraph isomorphic to a graph in $\mathcal{F}$, where $G^p$ is the $p$-th power of $G$. The \textsc{$(p,r,\mathcal{F})$-Packing} problem asks whether for a graph $G$ and an integer $k$, $G^p$ has $k$ induced subgraphs $H_1,\ldots,H_k$ such that each $H_i$ is isomorphic to a graph in $\mathcal{F}$, and for distinct $i,j\in \{1, \ldots, k\}$, the distance between $V(H_i)$ and $V(H_j)$ in $G$ is larger than $r$. We show that for every fixed nonnegative integers $p,r$ and every fixed nonempty finite family $\mathcal{F}$ of connected graphs, the \textsc{$(p,r,\mathcal{F})$-Covering} problem with $p\leq2r+1$ and the \textsc{$(p,r,\mathcal{F})$-Packing} problem with $p\leq2\lfloor r/2\rfloor+1$ admit almost linear kernels on every nowhere dense class of graphs, and admit linear kernels on every class of graphs with bounded expansion, parameterized by the solution size $k$. We obtain the same kernels for their annotated variants. As corollaries, we prove that \textsc{Distance-$r$ Vertex Cover}, \textsc{Distance-$r$ Matching}, \textsc{$\mathcal{F}$-Free Vertex Deletion}, and \textsc{Induced-$\mathcal{F}$-Packing} for any fixed finite family $\mathcal{F}$ of connected graphs admit almost linear kernels on every nowhere dense class of graphs and linear kernels on every class of graphs with bounded expansion. Our results extend the results for \textsc{Distance-$r$ Dominating Set} by Drange et al. (STACS 2016) and Eickmeyer et al. (ICALP 2017), and the result for \textsc{Distance-$r$ Independent Set} by Pilipczuk and Siebertz (EJC 2021).


翻译:Lets\ mathcal{F} 美元是一个图表的家族, 并且让 $2{cr} 美元 {cr} 美元不是负整数 。 问题在于 美元是否是一个G$和整数 美元, 是否有一个固定的美元 美元, 问题在于 美元 美元, 美元是 美元, 美元是 美元, 美元是 美元, 美元是 美元 。 美元是 美元, 美元是 美元, 美元是 美元, 美元是 美元 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月5日
Arxiv
0+阅读 · 2022年9月2日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员