The NP-complete problem Matching Cut is to decide if a graph has a matching that is also an edge cut of the graph. We prove new complexity results for Matching Cut restricted to $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. We also prove new complexity results for two recently studied variants of Matching Cut, on $H$-free graphs. The first variant requires that the matching cut must be extendable to a perfect matching of the graph. The second variant requires the matching cut to be a perfect matching. In particular, we prove that there exists a small constant $r>0$ such that the first variant is NP-complete for $P_r$-free graphs. This addresses a question of Bouquet and Picouleau (arXiv, 2020). For all three problems, we give state-of-the-art summaries of their computational complexity for $H$-free graphs.
翻译:NP- 完整的匹配剪切问题是要决定一个图形是否匹配, 是否也是图形的边缘切分。 我们证明匹配切切除的新的复杂结果仅限于$H$免费的图表, 也就是说, 图表不包含固定的图形$H$作为诱导的子图。 我们还证明最近研究的两个匹配切除变体的新复杂结果, 即$H$免费的图表。 第一个变方要求匹配切分必须扩展至与图形的完美匹配。 第二个变方要求匹配切分是完美的匹配。 特别是, 我们证明有一个小的常数$>0, 这样第一个变方对于$P_ r$免费的图表来说是NP- 完成的 。 这涉及到Bouquet 和 Picouleau( arXiv, 2020) 的问题。 对于所有这三个问题, 我们给出了它们计算复杂性的无$H美元图表的最新摘要 。