We introduce a new kernelization tool, called rainbow matching technique, that is appropriate for the design of polynomial kernels for packing problems. Our technique capitalizes on the powerful combinatorial results of [Graf, Harris, Haxell, SODA 2021]. We apply the rainbow matching technique on two (di)graph packing problems, namely the Triangle-Packing in Tournament problem (\TPT), where we ask for a directed triangle packing in a tournament, and the Induced 2-Path-Packing (\IPP) where we ask for a packing of $k$ induced paths of length two in a graph. The existence of a sub-quadratic kernels for these problems was proven for the first time in [Fomin, Le, Lokshtanov, Saurabh, Thomass\'e, Zehavi. ACM Trans. Algorithms, 2019], where they gave a kernel of $\mathcal{O}(k^{3/2})$ vertices and $\mathcal{O}(k^{5/3})$ vertices respectively. In the same paper it was questioned whether these bounds can be (optimally) improved to linear ones. Motivated by this question, we apply the rainbow matching technique and prove that \TPT admits an (almost linear) kernel of $k^{1+\frac{\mathcal{O}(1)}{\sqrt{\log{k}}}}$ vertices and that \IPP admits kernel of $\mathcal{O}(k)$ vertices.
翻译:我们引入一个新的内脏化工具,叫做彩虹匹配技术,它适用于用于包装问题的多元内核设计。我们的技术利用了[Graf、Harris、Haxell、SOD 2021] 的强大组合结果。我们将彩虹匹配技术应用于两个(di)字包装问题,即:在锦标赛中三角包装问题(\TPT),我们在比赛中要求一个定向三角包装,以及导出2-帕卡通(\IPPP),我们要求在图表中包装美元引导的两长路径。在[Formin、Le、Lokshtanov、Saurabh、Thomass\e、Zehavi。ACM Trans. Algorithms, 20199, 在那里,我们用一个$=mathcal1(O}(k) rickal) 美元双螺旋内径和 $macal O}O}(Ikshtatranical ral) 问题首次被证明存在。