For a connected graph $G=(V,E)$, a matching $M\subseteq E$ is a matching cut of $G$ if $G-M$ is disconnected. It is known that for an integer $d$, the corresponding decision problem Matching Cut is polynomial-time solvable for graphs of diameter at most $d$ if $d\leq 2$ and NP-complete if $d\geq 3$. We prove the same dichotomy for graphs of bounded radius. For a graph $H$, a graph is $H$-free if it does not contain $H$ as an induced subgraph. As a consequence of our result, we can solve Matching Cut in polynomial time for $P_6$-free graphs, extending a recent result of Feghali for $P_5$-free graphs. We then extend our result to hold even for $(sP_3+P_6)$-free graphs for every $s\geq 0$ and initiate a complexity classification of Matching Cut for $H$-free graphs.


翻译:对于连接的图形$G=( V, E) 美元, 匹配的 $M\ subseteq E$ 是匹配的 $G$ 如果 $G- M$ 断开, 匹配的 E$是匹配的 $G$ 。 已知对于整数美元, 相应的决定问题匹配 Cut 是多米时间, 如果 $d\leq 2 美元, 直径的图形最多为 $d\leq 2 美元, 而 如果 $d\ geq 3 美元, 直径的图形最多为 $P- 3 美元, 且 NP- 3 美元, 我们证明受约束半径的图形是相同的二分法 。 对于 $H $, 如果它不包含 $H$, 一个图表是免费的, 图表是 $H$。 由于我们的结果, 我们可以解决以多元时间匹配的 $P_ 6 免费的图形, 将 Feghali 最新结果扩大到每 $P_ 5 。 然后我们的结果甚至为 $( 3+ P_ 6) exfreegage) $ 0 和 exporting cutting colding ricing cutting cut riculation exglection for $ $.

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
SCI征稿 | IJCKG 2021,KG&GNN相关均可投递
图与推荐
0+阅读 · 2021年10月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月7日
Arxiv
0+阅读 · 2022年9月7日
Arxiv
0+阅读 · 2022年9月7日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
SCI征稿 | IJCKG 2021,KG&GNN相关均可投递
图与推荐
0+阅读 · 2021年10月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员