In this work, we are concerned with a Fokker-Planck equation related to the nonlinear noisy leaky integrate-and-fire model for biological neural networks which are structured by the synaptic weights and equipped with the Hebbian learning rule. The equation contains a small parameter $\varepsilon$ separating the time scales of learning and reacting behavior of the neural system, and an asymptotic limit model can be derived by letting $\varepsilon\to 0$, where the microscopic quasi-static states and the macroscopic evolution equation are coupled through the total firing rate. To handle the endowed flux-shift structure and the multi-scale dynamics in a unified framework, we propose a numerical scheme for this equation that is mass conservative, unconditionally positivity preserving, and asymptotic preserving. We provide extensive numerical tests to verify the schemes' properties and carry out a set of numerical experiments to investigate the model's learning ability, and explore the solution's behavior when the neural network is excitatory.
翻译:在这项工作中,我们关注一个与生物神经网络的非线性噪音漏泄整合与火灾模型有关的Fokker-Planck等式,该等式由合成重量组成,并配有赫比亚学习规则。该等式包含一个小参数,将神经系统的学习和反应行为的时间尺度区分为1美元,一个无药可循的极限模型可以通过让 $\varepsilon\ to 0美元得出,其中微型准静态和宏观进化等式通过总发速相结合。为了在一个统一的框架内处理附带的通量变换结构和多尺度动态,我们为这个等式提出了一个数字方案,这个等式是大规模保守、无条件的假设性保存和无药保护。我们提供了广泛的数字测试,以核实各种办法的特性,并进行一系列数字实验,以调查模型的学习能力,并在神经网络进行演示时探索解决办法的行为。