项目名称: 激光烧蚀过程中电子热输运的Fokker-Planck与流体模拟研究

项目编号: No.11275202

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 赵斌

作者单位: 南京工程学院

项目金额: 90万元

中文摘要: 将现有的Fokker-Planck程序,拓展到包含流体运动的一维柱对称、球对称空间位型下,并将真实的状态方程耦合到Fokker-Planck程序中。利用Fokker-Planck与流体模拟相结合的方法,研究激光烧蚀过程的电子热输运:1)采用上述两种模拟手段,在球对称空间位型下对冲击波点火的烧蚀过程进行模拟,细致考察电子非局域热输运对冲击波强度与形成的作用,以及对烧蚀压的影响;2)以充气的一位柱对称、球对称位型为简化模型,考察研究不同的几何位型和边界效应对靶壁膨胀等离子体电子热输运的修正;3)以Fokker-Planck模拟为参照,对比研究非局域热输运卷积模型耦合到流体计算的适用性,探索更实用的有效描述模型;4)研究状态方程对电子非局输运模型、稠密等离子体区域预热效应的修正,并建立相应的电子非局域热输运预热模型。

中文关键词: 福柯普朗克;电子非局域热传导;流体模拟;激光烧蚀;预热

英文摘要: Based on our one-dimensional planar Fokker-Planck code, cylindrical and spherical geometry choice are extended in the program and real equation of state is also incorporated . Using the Fokker-Planck and fluid simulation, the ablation process are simulated to investigate electron thermal transport. Firstly, nonlocal thermal transport in the shock ignition is simulated under spherical geometry, whose effects on the strength and production of shock and ablation pressure are carefullyinvestigated. Secondly, Cylindrical and spherical shell target filled with gas are simulated by using Fokker-Planck simulation with different boundary condition. the effects of different boundary condition and spatial geometry on electron transport are analyzed and compared. Thirdly, the effectiveness and applicability of non-local transport model are studied by using the fluid simulations to match the results computed by Fokker-Planck simulation, and new thermal transport model is supposed to be presented.Fourthly, preheating are investigated by inclusion of real equation of state process, and new preheating formula is expected to be presented.

英文关键词: Fokker-Planck simulation;nonlocal thermal conduction;hydrodynamic simulation;laser ablation;preheating

成为VIP会员查看完整内容
0

相关内容

《常微分方程》笔记,419页pdf
专知会员服务
70+阅读 · 2020年8月2日
时间晶体,直到世界尽头的浪漫
学术头条
0+阅读 · 2022年3月12日
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
7+阅读 · 2022年2月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
22+阅读 · 2022年2月4日
小贴士
相关VIP内容
相关资讯
时间晶体,直到世界尽头的浪漫
学术头条
0+阅读 · 2022年3月12日
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
7+阅读 · 2022年2月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员