项目名称: 临界朗道-栗弗西兹方程的能量凝聚与爆破解的研究
项目编号: No.11426068
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 钟澎洪
作者单位: 广东第二师范学院
项目金额: 3万元
中文摘要: Landau-Lifshitz方程是一个在材料学中得到广泛应用的偏微分方程,有着重要的物理学和数学上的研究价值。本项目研究该方程在临界情形时解的爆破问题,主要分为三部分内容:(1)对Cauchy问题,我们Frenet标架导出k度等变解附近的摄动方程,使用一些前沿的能量估计方法,研究近似解的局部存在性问题;(2)利用混合能量的Morawetz型估计研究导出的调制方程。证明方程解的爆破存在性定理和刻画爆破细节。(3)分析和讨论不同坐标下方程爆破动力学行为的本质区别,研究各类近似解给方程的爆破解带来的新问题和新现象。
中文关键词: 朗道-栗弗西兹方程;薛定谔映照;适定性;爆破;光滑
英文摘要: Landau-Lifshitz equation is a PDE which widely used in materials science. It plays an important role in physics and mathematics. We intend to study the blowup problems of the critical case of it in this dissertation. There are three parts in this projection: (1)On the Cauchy problem, we derive the perturbation equation near the k-equivariant solution, and prove the local existence of the approximate solution with some cutting-edge energy estimation method.(3) We study the modulation equation with the help of the mixed energy/Morawetz type estimation method, then we prove an existence theorem of finite time blowup and obtain the blowup details of the solution.(3)We analyze the essential differences about the blowup solutions under the different coordinates, and study the new problem and phenomena of blowup solutions driven by various approximate solutions.
英文关键词: Landau-Lifshitz equation;Schrodinger map;well-posed;blowup;smooth