Modeling and verification of dynamic systems operating over a relational representation of states are increasingly investigated problems in AI, Business Process Management, and Database Theory. To make these systems amenable to verification, the amount of information stored in each relational state needs to be bounded, or restrictions are imposed on the preconditions and effects of actions. We introduce the general framework of relational action bases (RABs), which generalizes existing models by lifting both these restrictions: unbounded relational states can be evolved through actions that can quantify both existentially and universally over the data, and that can exploit numerical datatypes with arithmetic predicates. We then study parameterized safety of RABs via (approximated) SMT-based backward search, singling out essential meta-properties of the resulting procedure, and showing how it can be realized by an off-the-shelf combination of existing verification modules of the state-of-the-art MCMT model checker. We demonstrate the effectiveness of this approach on a benchmark of data-aware business processes. Finally, we show how universal invariants can be exploited to make this procedure fully correct.
翻译:在AI、业务流程管理和数据库理论中,正在越来越多地调查在关系代表性方面运行的动态系统的建模和核查问题。为了使这些系统易于核查,每个关系状态中储存的信息数量需要相互约束,或对行动的先决条件和效果加以限制。我们引入了关系行动基础(RABs)总框架,通过取消这两项限制,将现有的模式归纳为一般模式:无限制关系国家可以通过能够对数据进行生存和普遍量化的行动来形成,并且能够利用数字数据类型来利用算术前位。我们随后通过(近似)基于SMT的后向搜索来研究RABs参数化的安全性,找出由此产生的程序的基本元组成部分,并表明如何通过现有最先进的MMCMT模型核对器现有核查模块的现成组合来实现安全性。我们展示了这一方法在数据认知业务流程基准上的有效性。最后,我们展示了如何利用通用的变差因素来使这一程序完全正确。