In this paper, we study first-order algorithms for solving fully composite optimization problems over bounded sets. We treat the differentiable and non-differentiable parts of the objective separately, linearizing only the smooth components. This provides us with new generalizations of the classical and accelerated Frank-Wolfe methods, that are applicable to non-differentiable problems whenever we can access the structure of the objective. We prove global complexity bounds for our algorithms that are optimal in several settings.


翻译:在本文中,我们研究一阶算法,以解决被捆绑的组合性优化问题。我们将目标的不同和无区别的部分分开处理,只将光滑的组件线化。这为我们提供了传统和加速的弗兰克-沃夫方法的新的概括性,只要我们能够进入目标的结构,这些方法就适用于无区别的问题。我们证明,对于几种情况下最理想的我们算法来说,我们的方法具有全球性的复杂性界限。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
65+阅读 · 2021年6月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
15+阅读 · 2019年6月25日
VIP会员
相关VIP内容
相关论文
Arxiv
11+阅读 · 2022年9月1日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
65+阅读 · 2021年6月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
15+阅读 · 2019年6月25日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员