This paper introduces a new problem in 3D point cloud: few-shot instance segmentation. Given a few annotated point clouds exemplified a target class, our goal is to segment all instances of this target class in a query point cloud. This problem has a wide range of practical applications where point-wise instance segmentation annotation is prohibitively expensive to collect. To address this problem, we present Geodesic-Former -- the first geodesic-guided transformer for 3D point cloud instance segmentation. The key idea is to leverage the geodesic distance to tackle the density imbalance of LiDAR 3D point clouds. The LiDAR 3D point clouds are dense near the object surface and sparse or empty elsewhere making the Euclidean distance less effective to distinguish different objects. The geodesic distance, on the other hand, is more suitable since it encodes the scene's geometry which can be used as a guiding signal for the attention mechanism in a transformer decoder to generate kernels representing distinct features of instances. These kernels are then used in a dynamic convolution to obtain the final instance masks. To evaluate Geodesic-Former on the new task, we propose new splits of the two common 3D point cloud instance segmentation datasets: ScannetV2 and S3DIS. Geodesic-Former consistently outperforms strong baselines adapted from state-of-the-art 3D point cloud instance segmentation approaches with a significant margin. Code is available at https://github.com/VinAIResearch/GeoFormer.
翻译:本文在 3D 点云层中引入一个新问题 : 少发点区块 。 在几个附加说明的点云中, 展示了一个目标类。 我们的目标是在查询点云层中分解这个目标类的所有实例。 这个问题具有广泛的实际应用, 点点分解注释收集的费用太高。 为了解决这个问题, 我们展示了大地测量- Former -- -- 3D 点云区块的第一个大地测量引导变异器。 关键的想法是利用大地测量距离解决LiDAR 3D 点云层的密度不平衡。 利DAR 3D 点云层云层在对象表面附近密度稠密, 在其他地方稀少或空, 使得 Euclidean 距离对不同对象的区分效果低得多。 另一方面, 地理测量距离更合适, 因为它将现场的地理测量作为变异器解调器解调机制的指导信号, 以产生代表不同实例的内核流。 这些内核内核流随后用于一个动态变异的直径框块, 以获取显著的硬点 3D 数据基段 。 。 。 评估 Sland- clocal- sal- developmentaldestrang 。