Wasserstein Barycenter is a principled approach to represent the weighted mean of a given set of probability distributions, utilizing the geometry induced by optimal transport. In this work, we present a novel scalable algorithm to approximate the Wasserstein Barycenters aiming at high-dimensional applications in machine learning. Our proposed algorithm is based on the Kantorovich dual formulation of the Wasserstein-2 distance as well as a recent neural network architecture, input convex neural network, that is known to parametrize convex functions. The distinguishing features of our method are: i) it only requires samples from the marginal distributions; ii) unlike the existing approaches, it represents the Barycenter with a generative model and can thus generate infinite samples from the barycenter without querying the marginal distributions; iii) it works similar to Generative Adversarial Model in one marginal case. We demonstrate the efficacy of our algorithm by comparing it with the state-of-art methods in multiple experiments.
翻译:瓦塞斯特因巴利中心是一种原则性方法,它代表了某一组概率分布的加权值,利用最佳运输引出的几何方法。在这项工作中,我们提出了一个新的可缩放算法,以接近瓦塞斯坦巴利中心,目的是在机器学习中进行高维应用。我们提议的算法是基于Kantorovich的瓦塞斯坦-2距离的双倍配方以及最新的神经网络结构、输入共心神经网络,这是众所周知的对等电离子函数。我们方法的显著特征是:i)它只需要边际分布的样本;ii)它与现有方法不同,它代表巴利中心,具有一种基因模型,因此可以在不问边际分布的情况下产生无限的采样;iii)它在一个边际案例中与Generation Aversarial模型相似。我们通过在多个实验中将其与状态方法进行比较来证明我们的算法的有效性。