Recently, generative adversarial networks (GANs) have shown promising performance in generating realistic images. However, they often struggle in learning complex underlying modalities in a given dataset, resulting in poor-quality generated images. To mitigate this problem, we present a novel approach called mixture of experts GAN (MEGAN), an ensemble approach of multiple generator networks. Each generator network in MEGAN specializes in generating images with a particular subset of modalities, e.g., an image class. Instead of incorporating a separate step of handcrafted clustering of multiple modalities, our proposed model is trained through an end-to-end learning of multiple generators via gating networks, which is responsible for choosing the appropriate generator network for a given condition. We adopt the categorical reparameterization trick for a categorical decision to be made in selecting a generator while maintaining the flow of the gradients. We demonstrate that individual generators learn different and salient subparts of the data and achieve a multiscale structural similarity (MS-SSIM) score of 0.2470 for CelebA and a competitive unsupervised inception score of 8.33 in CIFAR-10.
翻译:最近,基因对抗网络(GANs)在制作现实图像方面表现良好,但往往难以在特定数据集中学习复杂的基本模式,导致生成的图像质量差。为了缓解这一问题,我们提出了一个名为专家GAN(MEGAN)(MEGAN)的混合方法,即多发发电机网络的组合方法。MEGAN的每个发电机网络都专门用特定的一组模式制作图像,例如图像类。我们提议的模型不是将手工制作的多种模式组合单列一个步骤,而是通过Gatenet网络对多个发电机进行端到端学习,负责根据特定条件选择适当的发电机网络。我们采用了绝对的重新计分法,以便在选择发电机时作出明确决定,同时保持梯度的流。我们证明,每个发电机学习了不同和突出的数据分,在CelibA中取得了0.2470分的多级结构相似分数(MS-SSIM),并在CIFAR-10中取得了8.33分的竞争性、不超前初分数。