Much of computer-generated animation is created by manipulating meshes with rigs. While this approach works well for animating articulated objects like animals, it has limited flexibility for animating less structured creatures such as the Drunn in "Raya and the Last Dragon." We introduce Wassersplines, a novel trajectory inference method for animating unstructured densities based on recent advances in continuous normalizing flows and optimal transport. The key idea is to train a neurally-parameterized velocity field that represents the motion between keyframes. Trajectories are then computed by pushing keyframes through the velocity field. We solve an additional Wasserstein barycenter interpolation problem to guarantee strict adherence to keyframes. Our tool can stylize trajectories through a variety of PDE-based regularizers to create different visual effects. We demonstrate our tool on various keyframe interpolation problems to produce temporally-coherent animations without meshing or rigging.
翻译:计算机生成的动画大多是用钻机来操纵模具的。 虽然这个方法在动画像动物这样的显形物体方面效果良好, 但是在动画像像“ 拉亚和最后龙”中的Drunn这样的结构较弱的生物时, 它的灵活性有限。 我们引入了瓦塞斯普林, 这是一种新的轨迹推导法, 用来根据连续的正常流动和最佳运输的最新进展来模拟无结构的密度。 关键的想法是训练一个神经可计量速度场, 代表键框架之间的运动。 然后通过速度场推动键框架来计算轨迹。 我们解决了另一个瓦塞斯坦温温中枢的内插问题, 以保证严格遵守键框架。 我们的工具可以通过各种基于 PDE 的调制器来模拟轨迹, 以产生不同的视觉效果。 我们展示了我们关于各种关键框架间插图问题的工具, 以便在不进行网格或操纵的情况下产生符合时间的动画。