This paper studies the problem of computing a linear approximation of quadratic Wasserstein distance $W_2$. In particular, we compute an approximation of the negative homogeneous weighted Sobolev norm whose connection to Wasserstein distance follows from a classic linearization of a general Monge-Amp\'ere equation. Our contribution is threefold. First, we provide expository material on this classic linearization of Wasserstein distance including a quantitative error estimate. econd, we reduce the computational problem to solving a elliptic boundary value problem involving the Witten Laplacian, which is a Schr\"odinger operator of the form $H = -\Delta + V$, and describe an associated embedding. Third, for the case of probability distributions on the unit square $[0,1]^2$ represented by $n \times n$ arrays we present a fast code demonstrating our approach. Several numerical examples are presented.
翻译:本文研究了计算瓦森斯坦四方距离的线性近似值问题。 特别是, 我们计算了负均匀加权索博列夫规范的近似值, 该标准与瓦森斯坦距离的连接来自一般蒙格- 安普尔德等式的典型线性化。 我们的贡献是三重。 首先, 我们提供瓦森斯坦距离的典型线性分布的解说材料, 包括定量误差估计。 生态学, 我们减少计算问题, 以解决涉及Witn Laplaceian( 即以美元=-\ Delta + V$为单位的Schr\“ oder oder 运算器” 的极利边界值问题, 并描述一个相关的嵌入。 第三, 单位正方形的概率分布 $[ 10, 1, 2美元, 我们展示了一个快速的代码, 展示了我们的方法。