项目名称: 多复变函数空间上的算子和全纯映照类的分析与几何性质
项目编号: No.11271359
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 欧阳才衡
作者单位: 中国科学院武汉物理与数学研究所
项目金额: 60万元
中文摘要: 本项目主要研究多复变中有界对称域与强拟凸域上的各种全纯函数空间的结构,以及这些空间上由全纯函数或全纯映照所诱导的算子的性质;研究复Banach流形上的全纯函数空间及相关的算子理论,以及向量值调和分析与函数空间的一些问题。同时研究多复变数的具有参数表示的映照类的增长定理,研究全纯映照的从属表示和有界平衡拟凸域上的零伦全纯映照、螺形映照的几何性质,以及这些映照类在Roper-Suffridge算子作用下的分析性质、几何性质的不变性。多复变全纯函数与全纯映照以及它们所诱导的算子和多复变几何函数论中的重要映照类的研究是调和分析与泛函分析结合、复分析与实分析结合的交叉课题,对进一步揭示单复变与多复变的本质差别和实现从有限维复分析到无限维复分析的拓展均具有重要理论意义。
中文关键词: 函数空间;复合算子;零伦全纯映照;参数表示;
英文摘要: In this project, we mainly study the structure of the spaces of holomorphic functions on bounded symmetric domains or strongly pseudoconvex domains in several complex variables and the properties of operators on these spaces, induced by holomorphic functions or holomorphic mappings. We also study the spaces of holomorphic functions on complex Banach manifolds and the theory of relevant operators, including some problems on harmonic analysis and function spaces with vertor values. The grotwh theorem for the class of mappings with the parametric representation in several complex varisbles, the subordination representation of holomorphic mappings, and geometry property of null-homotopic holomorphic mappings,spirallike mappings on bounded balanced pseudoconvex domains, and invariance of analytic and geometric properties of such mappings under Roper-Suffridge operators are also studied. The researches on holomorphic functions, holomorphic mappings and the operators induced by them, and some main mappings in geometric function theory of several complex variables, are cross-subjects related to harmonic analysis, functional analysis, complex analysis and real analysis. They will have important theoretical significance in revealing further the essential differences of one complex variable and several complex variables
英文关键词: function spaces;composition operators;null-homotopic holomorphic mappings;parametric representation;