项目名称: 复几何中的奇性分析及应用
项目编号: No.11331001
项目类型: 重点项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 田刚
作者单位: 北京大学
项目金额: 230万元
中文摘要: 本项目主要研究微分几何和几何分析中产生的几何奇点和相关的正则性问题,如Kaehler几何中的典则度量存在性,Ricci流,轨形的几何分析理论,奇点的不变量与代数几何中的稳定性等。这些问题的核心是与各种奇点有关的几何,分析,拓扑等性质的研究,研究领域涉及多复变中的位势理论, 偏微分方程中实和复Monge-Ampere型方程, 代数几何中的几何不变量理论、模空间理论以及奇点形变理论, 几何分析中的Ricci流等的研究课题。本项目有望在这些课题研究中取得重大进展。
中文关键词: 典则度量;;Ricci流;轨形;;K-稳定性;几何不变量
英文摘要: In this project we will focus on various problems on geometric singularity and the related regularity in differential geometry and geometric analysis. The following problem will be investigated: existence of canonical metrics in Kaehler geometry, Ricci flow, geometric analysis theory of orbifolds, invariants of singularities and stabilities in algebraic geometry, etc. The main ingredients are the geometrical, analytical and topological properties of various singularities. The study covers potential theory in complex variables, real and complex Monge-Ampere typed equations in PDE, geometric invariant theory, moduli space theory, and singularity theory in algebraic geometry, and Ricci flow in geometric analysis. It is hopeful that significant progress can be made in the study of these problems in the near future.
英文关键词: canonical metrics;Ricci flow;orbifold;K-stability;geometric invariants