项目名称: Navier-Stokes方程组及相关复杂流体力学模型的若干数学问题

项目编号: No.11271017

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张挺

作者单位: 浙江大学

项目金额: 50万元

中文摘要: 申请人主持的青年科学基金项目按计划顺利进行,完成论文25篇,其中发表(录用)SCI论文21篇;申请人入选教育部“新世纪优秀人才支持计划”;通过概率化初值方法证明了不可压缩NS方程组关于一大类L^2初值是局部适定的;得到了第二粘性系数依赖于密度的高维NS方程组关于小能量初值的整体解存在性和长时间性态、真空发展的估计、奇性发展分析,并研究了相应的气固两相粘性流体运动方程组;研究了粘性依赖于密度的柱面对称可压缩NS方程组的边界层问题等。在本项目中我们将继续应用几何与现代分析技术、随机分析方法等来研究流体或复杂流体力学方程组的适定性问题。探讨方程的非线性程度、初值正则性和解的衰减性对解存在性的深层影响;寻找新的一类大初值使得NS系统和相关模型具有整体适定性;继续用集中紧原理研究解的长时间性态和解的破裂性质;研究粘性项对系统的适定性的影响;利用概率化初值的方法研究流体力学方程组等。

中文关键词: 偏微分方程;Navier-Stokes 方程;适定性;大初值;大时间性态

英文摘要: In our previous NSFC program, we completed 25 papers, including 21 SCI papers. The applicant was awarded by the Program for New Century Excellent Talents in University. After a suitable randomization, we construct the local unique strong solution for incompressible NS equations with a large set of initial data in L^2. We consider the global existence and uniqueness of the classical (weak) solution for the 2D or 3D compressible Navier-Stokes equations with a density-dependent viscosity coefficient, where the initial data are only small in the energy-norm. . Moreover, we give a description of the long time behavior of the solution, study the propagation of singularities in solutions, and show that if there is a vacuum domain initially, then the vacuum domain will exist for all time, and vanishes as time goes to infinity. And we also study the same problem for the 2D viscous liquid-gas two-phase flow model. We consider the boundary layer effect as the zero shear viscosity limit for the Navier–Stokes equations of compressible flows with density-dependent viscosity coefficient and cylindrical symmetry. In this project, we will continue to study the fluid or complex fluid equations by exploiting the geometry, modern analysis, and stochastic analysis methods. We will study the relationship between the local (global) ex

英文关键词: Partial differential equations;Navier-Stokes equations;Well-posedness;Large initial data;Long time behavior

成为VIP会员查看完整内容
0

相关内容

【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
【博士论文】基于冲量的加速优化算法
专知会员服务
27+阅读 · 2021年11月29日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
137+阅读 · 2021年3月5日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
五篇 ICCV 2019 的【图神经网络(GNN)+CV】相关论文
专知会员服务
15+阅读 · 2020年1月9日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
训练1000层的Transformer究竟有什么困难?
PaperWeekly
0+阅读 · 2022年3月13日
NVIDIA 招GNN加速方向实习生,GPU超多~
图与推荐
0+阅读 · 2022年1月24日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
14+阅读 · 2019年9月11日
小贴士
相关主题
相关VIP内容
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
【博士论文】基于冲量的加速优化算法
专知会员服务
27+阅读 · 2021年11月29日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
137+阅读 · 2021年3月5日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
五篇 ICCV 2019 的【图神经网络(GNN)+CV】相关论文
专知会员服务
15+阅读 · 2020年1月9日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
训练1000层的Transformer究竟有什么困难?
PaperWeekly
0+阅读 · 2022年3月13日
NVIDIA 招GNN加速方向实习生,GPU超多~
图与推荐
0+阅读 · 2022年1月24日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员