项目名称: 光滑与非光滑系统的定性分析与极限环分支
项目编号: No.11271261
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 韩茂安
作者单位: 上海师范大学
项目金额: 60万元
中文摘要: 本项目的研究对象主要涉及平面多项式微分系统、可积系统的周期函数、非光滑动力系统、反应扩散方程等,研究的主要问题是平面系统极限环的各种分支理论的深化与应用、临界周期的分支方法的探索、非光滑系统分支理论与方法的建立、反应扩散方程行波解的存在性和稳定性、分数阶方程边值问题解的存在性等,我们将:1.深入和系统地研究哈密顿系统的退化中心、同宿环与异宿环在扰动之下更多个极限环的分支问题和含高阶尖点、高阶幂零鞍点等同宿环与异宿环的扰动分支及其对多项式系统的应用;2.在可积多项式系统的临界周期的分支与个数方面建立新方法获得新结果;3.建立非光滑系统新型同宿轨的稳定性判定方法和极限环分支的新理论;4.给出反应扩散方程行波解的存在性和稳定性的新方法,并获得解析判定准则;研究具有复杂非线性项的或带有脉冲项的分数阶微分方程的周期边值问题解的存在性。以上这些问题是微分方程与动力系统学科普遍关注的重要前沿问题。
中文关键词: 平面光滑系统;环性数;非光滑系统;Melnikov函数;同宿异宿分支
英文摘要: This project is mainly concerned with polynomial differential systems on the plane, period functions of integrable systems, non-smooth dynamical systems and reaction-diffusion equations. The main topics to consider include bifurcation theory and methods of limit cycles of planar systems and their applications to some planar differential systems, bifurcation problems of critical period for integrable systems,bifurcation theory of limit cycles of non-smooth systems, existence and stability of traveling waves for reaction-diffusion equations, existence results of boundary value problems for fractional differential equations. More precisely, we will carry on the following studies: 1. We will give new methods and obtain new results on finding more limit cycles bifurcated from degenerate centers,homoclinic or henteroclinic loops of Hamiltonian systems under perturbations. The singular points on the homoclinic and heteroclinic loops may be hyperlic saddles,nilpotent cusps or nilpotent saddles. 2. We will estabilsh new theorems on the number and bifurcation methods of critical periods for polynomial integrable systems on the plane. 3. We will develop new theory on determining stability of homiclinic loops of new types and the number of limit cycles for non-smooth systems. 4. We will also explore new methods on t
英文关键词: Planar system;cyclicity;non-smooth system;Melnikov function;homoclinic and hetroclinic bifurcation