近几十年来,数据缺失的问题引起了广泛关注。这个新版本由两个公认的专家在这个问题上提供了一个最新的实用方法处理缺失数据问题。将理论与应用相结合,作者Roderick Little和Donald Rubin回顾了该主题的历史方法,并描述了缺失值的多元分析的简单方法。然后,他们提供了一个连贯的理论来分析基于概率的问题,这些概率来自于数据的统计模型和缺失数据的机制,然后他们将该理论应用到广泛的重要缺失数据的问题。
统计分析与缺失的数据,第三版开始给读者介绍缺失数据和解决它的方法。它查看创建丢失数据的模式和机制,以及丢失数据的分类。然后,在讨论完整案例分析和可用案例分析(包括加权方法)之前,对实验中缺失的数据进行检查。新版本扩大了它的覆盖面,包括最近的工作,如不响应抽样调查,因果推理,诊断方法,灵敏度分析,在许多其他主题。
2017年,国际统计研究所(International Statistical Institute)将卡尔·皮尔森奖(Karl Pearson Prize)授予了这两位作者,以表彰他们对统计理论、方法或应用产生深远影响的研究贡献。
第三版统计分析缺失的数据,是一个理想的教科书,为本科高年级和/或刚开始研究生水平的学科学生。它也是一个优秀的信息来源,为应用统计学家和在政府行业的从业人员提供参考。