This paper presents a control framework on Lie groups by designing the control objective in its Lie algebra. Control on Lie groups is challenging due to its nonlinear nature and difficulties in system parameterization. Existing methods to design the control objective on a Lie group and then derive the gradient for controller design are non-trivial and can result in slow convergence in tracking control. We show that with a proper left-invariant metric, setting the gradient of the cost function as the tracking error in the Lie algebra leads to a quadratic Lyapunov function that enables globally exponential convergence. In the PD control case, we show that our controller can maintain an exponential convergence rate even when the initial error is approaching $\pi$ in SO(3). We also show the merit of this proposed framework in trajectory optimization. The proposed cost function enables the iterative Linear Quadratic Regulator (iLQR) to converge much faster than the Differential Dynamic Programming (DDP) with a well-adopted cost function when the initial trajectory is poorly initialized on SO(3).
翻译:本文通过设计 Lie 代数中的控制目标,展示了有关 Lie 组的控制框架。 控制 Lie 组因其非线性性质和系统参数化的困难而具有挑战性。 设计 Lie 组的控制目标, 然后为控制器设计梯度的现有方法是非三角的, 并可能导致跟踪控制器的缓慢趋同。 我们用适当的左偏向度指标显示, 将成本函数的梯度设定为 Lie 代数的跟踪错误导致一个可实现全球指数趋同的二次曲线性 Lyapunov 函数。 在 PD 控制案中, 我们显示我们的控制器即使在初始错误在SO(3) 中接近 $\ pi$的情况下也能保持指数趋同率。 我们还在轨迹优化中展示了这一拟议框架的优点。 拟议的成本功能使得迭代线 Quaturatric 调节器( iLQR) 能够比差异动态编程( DDP) 更快地聚合, 当初始轨迹在SO(3) 上初始轨迹不完全初始时, 时, 得到很好的成本函数。