Colorectal cancer (CRC) is one of the most common fatal cancer in the world. Polypectomy can effectively interrupt the progression of adenoma to adenocarcinoma, thus reducing the risk of CRC development. Colonoscopy is the primary method to find colonic polyps. However, due to the different sizes of polyps and the unclear boundary between polyps and their surrounding mucosa, it is challenging to segment polyps accurately. To address this problem, we design a Boundary Distribution Guided Network (BDG-Net) for accurate polyp segmentation. Specifically, under the supervision of the ideal Boundary Distribution Map (BDM), we use Boundary Distribution Generate Module (BDGM) to aggregate high-level features and generate BDM. Then, BDM is sent to the Boundary Distribution Guided Decoder (BDGD) as complementary spatial information to guide the polyp segmentation. Moreover, a multi-scale feature interaction strategy is adopted in BDGD to improve the segmentation accuracy of polyps with different sizes. Extensive quantitative and qualitative evaluations demonstrate the effectiveness of our model, which outperforms state-of-the-art models remarkably on five public polyp datasets while maintaining low computational complexity. Code: https://github.com/zihuanqiu/BDG-Net
翻译:彩虹癌(CRC)是世界上最常见的致命癌症之一。 聚谱切除术可以有效地中断腺瘤向肾上腺瘤的进化,从而降低子宫癌发展的风险。 科洛诺scop是找到共聚物的主要方法。 但是,由于聚谱体的大小不同,而且聚谱及其周围粘结的边界界限不明确,因此对聚苯乙烯具有挑战性。 为了解决这一问题,我们设计了一个精确聚谱分割的边界分布引导网络(BDG-Net ) 。 具体地说,在理想的边界分布分布图(BDM)的监督下,我们使用边界分布生成模块(BDGM) 来综合高层次的特征并生成BDM。 然后,BDM被发送到边界分布导导导线(BDGDDD),作为辅助性空间信息来指导聚谱分割。 此外,BDGD采取了一个多尺度的特征互动战略,以提高不同尺寸的聚谱点的分解精度精确度。 广泛的定量和定性评估展示了我们模型的有效性,这种模型超越了状态- 州- 州- 州- 州- 州- 域网 模型,同时维持了五个公共数据 。