The simulation of multi-body systems with frictional contacts is a fundamental tool for many fields, such as robotics, computer graphics, and mechanics. Hard frictional contacts are particularly troublesome to simulate because they make the differential equations stiff, calling for computationally demanding implicit integration schemes. We suggest to tackle this issue by using exponential integrators, a long-standing class of integration schemes (first introduced in the 60's) that in recent years has enjoyed a resurgence of interest. We show that this scheme can be easily applied to multi-body systems subject to stiff viscoelastic contacts, producing accurate results at lower computational cost than \changed{classic explicit or implicit schemes}. In our tests with quadruped and biped robots, our method demonstrated stable behaviors with large time steps (10 ms) and stiff contacts ($10^5$ N/m). Its excellent properties, especially for fast and coarse simulations, make it a valuable candidate for many applications in robotics, such as simulation, Model Predictive Control, Reinforcement Learning, and controller design.
翻译:模拟多机体系统和摩擦性接触是许多领域的基本工具,例如机器人、计算机图形和机械。 硬摩擦性接触特别麻烦,因为它们使差异方程僵硬,要求采用计算要求不言明的整合计划。 我们建议使用指数化集成器来解决这个问题,这是一个长期的一体化计划(60年代首次引入),近年来,这种集成计划已经重新引起人们的兴趣。 我们表明,这个计划可以很容易地应用于多机体系统,接受僵硬的粘结性接触,以低于\\changed{古典直观或隐含计划}的计算成本产生准确的结果。 在我们与四肢和双肢机器人的测试中,我们的方法展示了稳定的行为,有大的时间步骤(10米)和硬性接触(10.5亿新元/米) 。 它的优点,特别是快速和粗劣的模拟,使它在机器人设计中成为许多应用的宝贵人选,例如模拟、模型预测控制、强化学习和控制器设计。